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Abstract 

A large and reliable DNA codeword library is key to the success of DNA based 

computing. Searching for sets of reliable DNA codewords is an NP-hard problem, 

which can take days on state-of-art high performance cluster computers. This work 

presents a hybrid architecture that consists of a general purpose microprocessor and 

a hardware accelerator for accelerating the multi-deme genetic algorithm (GA) for 

the application of DNA codeword searching. The presented architecture provides 

more than 1000X speed-up compared to a software only implementation. A code 
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extender that uses exhaustive search to produce locally optimum codes in about 1.5 

hours for the case of length 16 codes is also described. The experimental results 

demonstrate that the GA can find ~99% of the words in locally optimum libraries. 

Finally, we investigate the performance impact of migration, mating and mutation 

functions in the hardware accelerator. The analysis shows that a modified GA 

without mating is the most effective for DNA codeword searching.  
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1. Introduction  

The DNA molecule is now used in many areas far beyond its traditional function. 

The first DNA-based computation was proposed and implemented by Adleman [1]. 

It demonstrates the effectiveness of using DNA to solve hard combinatorial 

problems. DNA molecules have also been used as information storage media and 

three dimensional structural materials for nanotechnology.  

One of the major concerns of DNA computing is reliability. In DNA computing, 

the information is encoded as DNA strands. Each DNA strand is composed of short 

codewords.  DNA computing is based on the hybridization process, which allows 

short single-stranded DNA sequences (i.e. oligonucleotides) to self-assemble to 

form stable double-stranded duplexes. The reliability of the computing is 

determined by whether the oligonuleotides can hybridize in a predetermined way. 

The key to success in DNA computing is the availability of a large collection of 

DNA codeword pairs that do not crosshybridize.   

Various quality metrics have been proposed to guide the construction process [1]-

[5]. The computation of these metrics dominates the run time of the code building 

process.  While metrics based on the Gibbs energy and nearest neighbor 

thermodynamics and consideration of secondary structure formation give accurate 



measurement of hybridization, they are computationally costly, as a first step in this 

work we chose a simpler metric, the Levenshtein distance, or the so-called deletion-

correcting or edit distance, which has also been used to construct DNA codes [6]. 

Regardless of the quality metric used, composing DNA codes is NP-hard because 

the number of potential codewords that must be searched increases exponentially 

with the length of the DNA codewords.  Exhaustive checking is generally 

impractical for words of length greater than about 12 base pairs.  Various 

algorithms have been proposed for building DNA codes, including the GA [7], 

Markov processes [8], and Stochastic methods [9]. Recent work [10] has shown 

that a hybrid GA blended with Conway’s lexicode algorithm [11][12] achieves 

better performance than either alone in terms of generating useful codes quickly.   

Search methods for DNA codes are extremely time-consuming, and this has limited 

research on DNA codeword design, especially for codes of length greater than 

about 12-14 bases.  Theory is lacking to provide tight upper bounds on the size of 

codeword sets, and the best known bounds are base on experiments. For example, 

the largest known reverse complement edit distance DNA codeword library (length 

16, edit distance 10) consist of 132 pairs, composing   such codes can take several 

days on a cluster of 10 G5 processors.  

This paper focuses generally on speed-up techniques for the composition of reverse 

complement, edit distance, DNA codes of length 16, using a multi-deme genetic 

algorithm. We propose a FPGA (Field Programmable Gate Array) based hardware 

accelerator design which performs multi-deme parallel GA on a single chip. The 

hardware accelerator and the host PC communicate via the system bus, and an 

appropriate software interface controls communication between them. The 

proposed architecture provides more than 1000X speed-up compared to a software 

only implementation. A hardware based code extender that uses exhaustive search 

to produce locally optimum codes is also described. The code extender does a final 

scan across the entire universe of possible codewords and completes the codeword 

library generated from GA by adding any additional words that satisfy the specified 

constraints.   



The remainder of this paper is organized as follows: Section 2 provides the 

necessary biological background and terminology.  Section 3 introduces the 

problem definition and the genetic algorithm for DNA codeword search. Section 4 

gives the detailed information about how to accelerate the GA fitness calculation. 

Sections 5 and 6 provide details about the hybrid architecture and some 

performance analysis of the design. Performance comparison between the hardware 

and the software version of the GA, and early results on locally optimum codes are 

also presented in Section 6.  Final conclusions are given in Section 7. 

2. Background  

The DNA molecule is a nucleic acid. It consists of two oligonucleotide sequences. 

Each sequence consists of a sugar-phosphate backbone and a set of nucleotides 

(also called bases) connecting with the backbone. The oligonucleotide sequence is 

oriented. One end of it is denoted as 3’ and the other as 5’.  

There are four types of bases: Adenine, Thymine, Cytosine, and Guanine. They 

are denoted briefly as A, T, C, and G respectively. Each base can pair up with only 

one particular base through hydrogen bonds: A+T, T+A, C+G and G+C. 

Sometimes we say that A and T are complementary to each other while C and G are 

complementary to each other. A Watson-Crick complement of a DNA sequence is 

another DNA sequence which replaces all the A with T or vise versa and replaces 

all the T with A or vise versa, and also switches the 5’ and 3’ ends. A DNA 

sequence binds most stably with its Watson-Crick complement and the structure 

they form is called Watson-Crick (WC) duplex. Figure 1 (a) shows an example of a 

WC duplex. We refer to the non-WC duplex as crosshybridized (CH) duplex. 

Figure 1 (b) shows an example of a CH duplex. Only WC duplexes are needed 

during DNA computing. Therefore, it is important to design the DNA codes such 

that a fixed temperature can be found that is well above the melting point of all CH 

duplexes and well below the melting point of all WC duplexes that can form from 

strands in the code.  



Predicting crosshybridization involves many considerations. In this paper, we only 

consider the first order effect, and use the maximum number of possible Watson-

Crick pairs between two sequences to represent their bonding strength. Such 

approximation is widely adopted by the research works in DNA codeword design 

[6][12]. Furthermore, the DNA sequences of length 10 or greater are usually 

considered to be flexible [6]. Therefore, the binding strength of two DNA strands is 

measured by the length of the longest complementary subsequence (not necessarily 

contiguous) of one strand and the reverse of the other. For example, Figure 1 (b) 

shows two DNA strands that bind with 5 Watson-Crick pairs. The length of the 

longest complementary sequence between two flexible DNA strands, A and B, is 

the same as the length of the longest common sequence (LLCS) between A and B  

[6], where  B  is the Watson-Crick complement of B. 

.  

 

 

Figure 1 Binding between DNA strands. 

3. Problem Formulation and Optimization Algorithm  

We consider each DNA codeword as a sequence of length n in which each symbol 

is an element of an alphabet of 4 elements. The length of the longest common 

sequence between DNA strands A and B is denoted as LLCS(A, B).  In this work, 

we focus on searching for a set of DNA codeword pairs S, where S consists of a set 

of DNA strands of length n and their reverse complement strands e.g. {(s1, 1s ), (s2, 

2s ), …}, where (s1, 1s ) denotes a strand and its Watson-Crick complement.  The 

problem can be formulated as the following constrained optimization problem: 

               ||max S     such that                                              (1) 

        SsssLLCS ∈∀≤ 111     ,),( σ ,                                           (2) 
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       SssssLLCS ∈∀≤ 2121 , ,),( σ                                            (3) 

       SssssLLCS ∈∀≤ 2121 , ,),( σ ,                                          (4) 

where σ is a predefined threshold. Equation (1) indicates that our objective is to 

maximize the size of the DNA codeword library. The first constraint specifies that a 

DNA codeword in the library cannot bind with itself. The second and the third 

constraints specify that a DNA codeword in the library cannot bind with another 

library word or its Watson-Crick complement. Both of these two constraints must 

be satisfied because a DNA strand always occurs with its Watson-Crick 

complement. 

A genetic algorithm (GA) is a stochastic search technique based on the mechanism 

of natural selection and recombination. Solutions, which are also called individuals, 

are evolved from generation to generation, with selection, mating, and mutation 

operators that provide an effective combination of exploration of the global search 

space. The Island multi-deme GA is a widely used parallel GA model in which the 

population is divided into several sub-populations and distributed on different 

processors. Each sub-population evolves independently for a few generations, 

before one or more of the best individuals of the sub-populations migrate across 

processors. In this work, the single point cross-over mating operator is used.  

Each individual in the population is a DNA codeword encoded as a binary string 

with length 2n, where n is the length of the codeword in bases. The four bases (A, 

T, C, G) are encoded as (00, 01, 11, 10).   Each DNA strand of length 16 can be 

represented as a 32 bit integer. Given a codeword library S, the fitness of each 

individual d reflects how well the corresponding codeword fits into the current 

codeword library. Two values define the fitness, reject_num and max_match. The 

reject_num is the number of codewords in the library which satisfies the condition 

that σ>),( dsLLCS  or σ>),( dsLLCS . The max_match can be calculated as  

SsdsLLCSdsLLCSddLLCS ∈∀−−− ),),(,),(,),(max( σσσ . The codeword with 

lower fitness fits better in the library. 



From equations (2)-(4) we know that a valid library word must have reject_num 

equal to 0. It is observed that adding a codeword with reject_num = 0 and 

max_match > 0 into the library will restrict the future growth of the library. Such 

codewords bind very weakly with other library words, but they are too far apart in 

the search space and interfere with closest packing. To maximize the library size, 

we want to select only those codewords that are “just good enough”.   To ensure 

this, we add another constraint to the optimization problem: 

      SssssLLCSssLLCS ∈∀= 212121 , ,)),(),,(max( σ      (5) 

Therefore, only codewords with reject_num = 0 (which implies max_match = 0) 

will be added into the library.   

A traditional GA mutation function might randomly pick an individual in the 

population, randomly pick a pair of bits in the individual representing one of its 16 

bases, and randomly change the base to one of the 3 other bases in the set of 4 

possible bases. In the proposed algorithm, however, we randomly select an 

individual, but then to exhaustively check all of the 48 possible base changes.  This 

is an attempt to speed beneficial evolution of the population by minimizing the 

overhead that would be associated with randomly picking this individual again and 

again in order to test those mutations.  We also specify that if none of the 48 

mutations were beneficial, one of them is selected at random.  This enables the 

individual to remain in the population and possibly experience subsequent 

(multiple) mutations.  Figure 2 gives the pseudo code for the modified mutation 

function. 

When an individual in the population achieves a fitness of 0, it is added to the set of 

good codewords, and the selected individual in the population is replaced by a new 

random individual.  The GA is allowed to run until one of three termination criteria 

is satisfied: the number of codewords in the set is as large as desired; the algorithm 

has run for a specified maximum number of generations; or the algorithm has run 

for a specified maximum amount of time.  We store the codeword values, the 

elapsed time at which they are each found in memory during a run, and store that 



data to a disk file at the end of a run.  We also calculate and store the average time 

at which the ith words are found across multiple runs to assess average 

performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Modified mutation algorithm. 

4. Hardware Acceleration of LLCS Calculation 

The most time consuming part of the proposed GA algorithm is to calculate the 

fitness value for each individual. Performance profiling of our software GA version 

showed that >98% of the computing time was spent calculating the LLCS between 

strands.  

Mutation( ) 

//M is the set of mutated individuals;  

//L is the set of library codewords; 

Randomly select an individual s from initial population; 

M = Φ; 

FOR i = 1 TO n 

    B = {A, T, C, G} – {s[i]}; //B is the set of three nucleotides that is different from 

the ith nucleotide of s 

    Generate three mutated individuals {s1, s2, s3} by replacing the ith nucleotide 

with one of the elements of B; 

    M = M ∪ {s1, s2, s3}; 

END 

Evaluate the fitness for each m ∈ M; 

IF   (∃m, fitness(m) = 0)   THEN L = L ∪ {m}; 

ELSE     //evolve the population by replacing the original individual with a new 

individual with better fitness 

    Select the individual x which has the lowest (best) fitness and x∈M; 

    IF  fitness(x) < fitness(s)  THEN  replace s with x; 

    ELSE replace s with a random individual from M; 

END 

RETURN     



The LLCS is calculated using dynamic programming. Figure 3 gives the pseudo 

code of the algorithm. The intermediate results are stored in an n×n matrix, where n 

is the length of the DNA codeword in bases. The calculation starts at the top left 

corner of the matrix and the final result is the value calculated in the cell located at 

the bottom right corner. For DNA codewords with length 16, at least 256 

operations are needed before we can obtain the final result. Therefore, the 

throughput of the software based LLCS calculation is less than 1/n2. 

 

 

 

 

 

 

Figure 3 LLCS distance calculation. 

Many systolic algorithms for the LCS problem have been proposed [16][16]. The 

LLCS calculation is a much simpler problem. In this work, we implemented a 2D 

systolic array for the acceleration of LLCS calculation. The systolic array is an n×n 

array of identical cells. Figure 4 (a) gives the structure of each cell, including its 

input/output and the computation implemented.  The computation is performed 

every other clock period. The overall architecture of the 2D systolic array as well as 

the data dependency and timing information are shown in Figure 4 (b). In order to 

prevent ripple through operation, the cells in the even columns and even rows or 

odd columns and odd rows are synchronous to each other and perform the 

computation in the same clock period. The rest of the cells are also synchronous to 

each other but perform the computation in the next clock period. In this way, the 

results propagate through the array diagonally. It is easy to see that after a latency 

period that is required to fill the pipeline, the throughput of the systolic array is ½, 

i.e. 1 output result per 2 clock periods.  

LLCS(a, b)  

    Initialize llcs[0][i] and llcs[i][0], 0≤i≤n-1 

FOR i = 0 TO n-1 BEGIN 

    FOR j = 0 TO n-1 BEGIN 

        IF (a[i] = b[j]) THEN k = 1  ELSE k = 0; 

             llcs[j][i] = max(llcs[j-1][i], llcs[j][i-1], llcs[j-1][i-1]+k);  

        END 

    END 

END 



It is interesting to note that as n increases, the hardware resource cost increases, but 

the throughput remains the same, as long as the reconfigurable hardware chip has 

sufficient resources to implement a full n×n array of cells. A version of this chip for 

words of length 32 is feasible. Another detail is that the systolic array must be fed 

by an array of registers that delay the entry of the bases on the right of word a and 

at the bottom of the word b.  In effect, this synchronizes the presentation of those 

parts of the operand words with the diagonal waves of intermediate calculations in 

the cells that proceed from the upper left corner down and to the right through the 

array. 

 

 

 

 

 

 

 

 

Figure 4 2D systolic array for LLCS calculation. 

5. Hybrid Architecture  

The proposed hybrid architecture consists of a host CPU, a hardware accelerator 

and a software program running on the host CPU. The host CPU and the hardware 

accelerator are connected via the system bus. In order to increase the portability of 

the design, we divide it into two modules: the bus interface and the hardware 

accelerator core. The hardware accelerator will also be called as processing element 

(PE) in the rest of the paper. The bus interface module connects to the bus as a 

slave. It has a set of command registers and an information exchange memory, 
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which can be accessed by both CPU and the PE. For different bus architecture, a 

new bus interface must be developed.  

5.1 Hardware Acceleration for Multi-deme Parallel GA Based 

Codeword Search 

A two-level method is adopted to control the PE. At the top level, the operations of 

the PE are categorized into 9 states: {idle, init, check_pop, mutation, check_mutate, 

update_pop, update_lib, sorting, mating}. In the init state, the PE generates a 

random initial population, and sets up either an empty initial library, or reads an 

initial partial library from a disk file.  In the mutate state, the PE produces a 

population of 47 mutated individuals based on a chosen individual. The PE 

calculates the fitness for all the individuals in the initial population, and in the 

mutated population, in the “check_pop” and “check_mutate” states, respectively. In 

the “update_lib” state, the PE writes the newly discovered acceptable codewords 

into the library. In the “update_pop” state, the PE writes the best (or a randomly 

chosen) mutated individual back to the working population. In the “sorting” state, 

the PE scans the entire population to pick the best k individuals. Two parents are 

randomly picked from these individuals when the PE is in the “mating” state and 

single-point cross-over is performed. A control flag is introduced which can be 

used to disable the sorting and mating functions in the PE.  

Each state corresponds to an operation in the GA algorithm. Figure 5 (a) shows the 

control and data flow graph (CDFG) of the algorithm based on this state division. 

The “update_lib” and “update_pop” operations are one cycle operations because 

they only perform a memory write. All the other operations are multi-cycle 

operations, which again can be divided into sub-states. When the top level state 

machine enters the state of a multi-cycle operation, the second level state machine 

is triggered. 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5  Top level state machine controller. 

We call an operation a blocking operation if its successors in the CDFG cannot 

start until this operation is done. Similarly, an operation is called non-blocking 

operation if its successors can start right after this operation started. The “init” and 

“mutation” operations are both non-blocking operations. While the PE is generating 

the initial population and the mutated population, it is at the same time checking the 

fitness of the generated individual. The “check_pop” and “check_mutate”, 

“sorting”, and “mating” operations are blocking operations. Their following 

operations cannot start until they have been finished. Figure 5 (b) shows the 

scheduling of the operations. 

A buffer is needed to pass the results of one operation to its successor. In particular, 

a first-in-first-out (FIFO) storage should be used as the output buffer of a non-

blocking operation. However, the implementation of the FIFO is relatively easy in 

(b) Scheduling of operations   
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this design because the non-blocking operations are always faster than their 

successors. Therefore, it is not necessary to check the FIFO underflow condition. 

The output buffers are implemented using the FPGA built-in block memories. The 

block memories are dual port memories which can be read and written 

simultaneously. Three memory blocks are used: Initial Population Memory (Mpop), 

Mutated Population Memory (Mmutate) and CodeWord Library Memory (Mlib). The 

input and output buffers of different operations are given in Table 1. 

Table 1. The input/output buffer of operations. 

operations Input Output 

init - Mpop 

check_pop Mpop Mlib 

mutate Mpop Mmute 

check_mutate Mmute Mlib 

update_lib Mpop Mlib 

update_pop Mmute Mpop 

sorting Mpop Mpop 

mating Mpop Mpop 

 

The PE and the host CPU program run asynchronously. Four-way handshaking 

protocol is used to synchronize the communication between hardware and software.  

5.2 Parallel Multi-deme GA 

The PE discussed above uses about 12,263 LUTs (look-up-tables), which is only 

about 42% of the programmable resources in a Xilinx Virtex II 3000 FPGA and 

about 16% of the programmable resources in a Xilinx XC2VP70 FPGA. Therefore, 

we evaluated a further speed-up enhancement that involved implementing multiple 

parallel PEs on a single FPGA. The architecture supports the exchange of best 



individuals among PEs. Therefore, the overall system performs parallel multi-deme 

GA.  

The system consists of n PE modules, which are denoted as GA1~GAn, an arbiter 

and a bus interface. The value of n is determined by the size of the FPGA. For 

example, n is 2 for the Virtex II 3000 FPGA and 5 for the XC2VP70. Each module 

implements the above mentioned genetic algorithm to search for the DNA 

codeword. They are independent to each other. The populations in different GA 

modules are initialized using different random seeds.   

Communication and synchronization are two challenges that need to be addressed 

when designing a system that performs parallel GA. All the GA modules share the 

same bus interface. Codewords found by any one GA module must be harvested 

and passed to the other GA modules. In this design, all the GA modules are 

connected to an arbiter. When a GA module finds a new codeword, it raises the 

“PE_got_new_word” flag and requests to be connected to the bus interface to 

communicate with the host. The arbiter broadcasts the new codeword to all other 

GA modules and raises the “update_library” flag. The GA module that receives the 

“update_library” request must terminate its current operation and go to 

“update_lib” state. If multiple GA modules raise the “PE_got_new_word” flag 

simultaneously, the arbiter must select one of them and invalidate the others. The 

decision is based on a fixed priority. The arbiter also connects the selected GA 

module that has found a new codeword with the bus interface to communicate with 

the host. If another GA module finds a new word, it must wait till the end of the 

current host-PE communication procedure to be connected to the bus interface. 

Figure 6 (a) shows the state machine controller of the arbiter for library update. 

 

 

 

 

 



 

 

 

 

 

 

 

Figure 6 State machine controller of the arbitrator. 

In the multi-deme island GA, the best few individuals of each sub-population 

migrate periodically according to an interconnect configuration, e.g. around a ring 

in one direction. This procedure is also controlled by the arbiter. A separate state 

machine controller in the arbiter is developed for the migration procedure. Figure 6 

(b) shows the state diagram of the migration controller. Periodically, the PE sends a 

migration request to the arbiter. The arbiter will acknowledge this request if its 

migration controller is in the idle state. After receiving the acknowledgement from 

the arbiter, the PE sends its best few individuals and their fitness values to the 

arbiter.  These data are placed in a memory together with similar data received from 

other PEs. The arbiter sorts and picks the best m individuals, where m is the number 

of individuals to be migrated, and sends them back to the PE which started the 

request for migration.  For the case of 2 PEs on a chip served by one arbiter, this is 

equivalent to a directed ring configuration.  However, for the case of more than 2 

PEs on a chip, this approach implements a local pooling, or all-to-all configuration.  

Above the chip level, the host is still free to implement any communication 

configuration among host nodes in a cluster with standard MPI. 

5.3 Hardware Acceleration for Exhaustive Search 

The effectiveness of the stochastic search decreases when the size of the search 

space increases, or when the solution space decreases due to additional constraints. 
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As codewords are added to the library, more library words must be checked against 

candidates, and the new words act as new constraints. As a result, the time required 

for the GA to find a new codeword increases exponentially. Furthermore, using 

stochastic search, we will never know whether still another new codeword can be 

added to the library. The only way to answer this question is by using exhaustive 

search, i.e. checking every possible codeword in the universe of all possible 

codewords. The complexity of exhaustive search increases linearly with the number 

of codewords already in the library.  However, the complexity of exhaustive search 

also increases exponentially with the length of the codewords. As the name 

suggests, for a given initial library, the exhaustive search portion of the hybrid 

algorithm must scan the entire codeword space and find all remaining additional 

valid codewords that satisfy constraint equations (2)-(4). For DNA codewords of 

length 16, and for an initial library with 100 codewords, exhaustive search in 

software would take 52 days on a 2.0GHz Intel Xeon processor if checking a pair 

takes 10 microseconds. 

With small modification, we can implement the exhaustive DNA codeword search 

using hardware. The hardware accelerator for exhaustive codeword search consists 

of only one memory, which is used to store the codeword library, a 32 bit counter 

cycled from 0 to its maximum value to represent the potential new word, and two 

systolic array fitness checkers. For each codeword x, the calculation of 

),( sxLLCS and ),( sxLLCS , where Ss∈ , are performed simultaneously by the two 

fitness checkers.  

The hardware accelerator for exhaustive search of DNA codewords of length 16 

uses 21,733 LUTs, which is about 75% of Virtex II 3000 FPGA. At 100Mhz clock 

frequency, the hardware accelerator takes about 1.5 hours to scan the entire ~4.3 

billion codeword space for codewords of length 16, which is over 800 times faster 

than the workstation PC software only case. At the completion of exhaustive search 

we can say that a codeword set is locally optimum, in the sense that given the series 

of random numbers used to drive the stochastic GA in the early phase of building, 

no additional codewords can be added to increase the size of the library.  To date, 



little data has been published in the literature on locally optimum edit distance 

codes of lengths greater than about 12 bases, and this hardware accelerator enables 

us to efficiently explore this aspect of the problem domain for the first time. 

6. Experimental Results 

A hardware accelerator that uses a stochastic GA to build DNA codeword libraries 

of codeword length 16 has been designed, implemented, and tested. The first 

version uses one fitness evaluator and is implemented on a single FPGA chip. 

Table 2 Comparison of different platforms 

 

The design has actually been ported onto three different reconfigurable computing 

platforms, including a Xilinx XUP Virtex-II Pro evaluation board [13], a laptop 

computer with the Annapolis Wildcard FPGA board [14], and a desktop computer 

with the Annapolis Wildstar–II FPGA board.  Different bus architectures are used 

to connect the hardware accelerator to the host CPU in each of the different 

platforms. The PLB bus is used in the Xilinx Virtex-II Pro evaluation board, while 

the PCMCIA card bus and PCI-X bus are used in the system with WildStar and 

WildCard, respectively. The other difference among these platforms is the amount 

of resources available on the FPGA chips resident on the boards. Table 2 shows the 

size of the reconfigurable logic and the on-chip memory for the different computing 

platforms. 

The first set of experiments evaluates the performance impact of various parameters 

of the hardware multi-deme GA, including the size of the sub-population, the 

percentage of mutation during each generation, the length of epoch between 

Computing platform FPGA Logic Cells BRAMs (kb) 

XUP eval. board XC2VP30 30,816 2,448 

WildCard-II Xilinx Virtex II 3000 28,672 1,728 

WildStar Pro XC2VP70 74,448 5,904 



migrations and the number of best individuals that migrate. For this first set of 

experiments, the hardware implementations consisted of 2 parallel PEs that perform 

GA based codeword searching, each with one LLCS checker, and without 

exhaustive search. 

We first ran the DNA codeword searching varying sub-population from 16 to 256. 

The number of keepers, the length of the epoch, number of migrated individuals, 

and the percentage mutation were fixed to be 8, 5, 7 and 10.  Figure 7 shows a 

comparison of the average performance of those runs, in terms of the time it takes 

to build a large library.  Less time is better, so the lower curve is better than the 

upper curve. In all the plots given by Figure 7-13,  the x axis is the number of 

codewords found, where each codeword is either a strand or its reverse complement 

(a pair counts for 2). The GA is a stochastic algorithm, so each point in the curves 

is the average over 10 runs of the times taken to find the # of codewords on the x 

axis. For these experiments we set the length of the codewords n to be 16, and the 

permissible match (n- edit distance) σ to be 10.  The experimental results show that 

with mating and migration enabled, a small population is superior to a large 

population in terms of search speed. This is because the most time consuming 

operation in mating and migration is pick up the best k individuals, which we call 

the number keepers. This does not require a full sort of the population, but even so, 

it is a sequential procedure that cannot be accelerated by a parallel architecture for 

typical population sizes.  It takes more time to index through a larger population 

multiple times to find its best k individuals.   

 

 

 

 

 

Figure 7 Effect of size of sub-population 
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In the second experiment, we vary the percentage mutation from 1 to 25 to evaluate 

its impact on performance. The size of sub-population, the number of migrated 

individuals, the length of epoch and the number of keepers were fixed to be 64, 7, 5 

and 8. Figure 8 shows a comparison of the average performance of different 

configurations. As we can see, the percentage mutation has a significant impact on 

the system performance.  

 

 

 

 

Figure 8 Effect of mutation 

Higher percentage mutation leads to better performance. For example, to find 206 

codewords, the hardware GA configured with 25% mutation is about 400X faster 

than the hardware GA configured with 1% mutation. This can partly be explained 

by the overhead of mating. When the size of population is fixed, the value of 

percentage mutation determines how many mutation operations will be performed 

between two mating operations. Because each mutation operation takes fixed 

amount of time, it also determines the frequency of mating operations. A higher 

percentage mutation implies less frequent mating, and thus, lower overhead from 

the sorting operation.  

In the third and the fourth experiments, we vary the number of migrated individuals 

and the number of generations in the epoch between migrations, respectively, to 

evaluate the performance impact of these two parameters. However, the results 

show that there is little performance impact from the number of migrated 

individuals and the epoch length. Due to the space limit, we do not report this data 

in the paper. 
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Figure 9 Effect of mating and migration. 

The second set of experiments compares the performance of multi-deme hardware 

GA with and without mating and migration. Figure 9 shows a comparison of the 

average performance of GA with mating and migration versus GA without mating 

and migration when the size of sub-population varies from 16 to 256. The number 

of keepers, the length of the epoch, the size of migrated individuals and the 

percentage mutation are fixed to be 8, 5, 7 and 10.  As we can see, overall, the 

parallel GA without mating and migration is more efficient than the parallel GA 
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with mating and migration. The difference becomes more significant as the size of 

population increases. Again, this shows that the overhead of mating increases as the 

population size increases. 

Figure 10 analyzes the data from this experiment in terms of the speed 

improvement of parallel GA without mating and migration, for different population 

sizes, normalized to the performance with population size 16. As we can see, at the 

beginning of the search, smaller populations find words faster, but as the number of 

codewords increases, the larger populations find word slightly faster.  This effect 

may be due to the  beneficial effect of processing more mutations in between pick-

up operations at the end of generations (doing wider search) outweighs the negative 

effect of the overhead of the pickup operation that also increases with population 

size. 

 

 

 

 

 

Figure 10 Effect of size of population in GA w.o. mating and migration.Figure 11 

shows the performance comparison between a single PE system and a 2 PE system. 

Both systems are configured with population size equal to 16 and both are running 

without mating and migration. As expected, the 2-PE system is about twice as fast 

as the one PE system  

The next set of experiments compares the hardware GA with a software version of 

the GA, again without mating and migration, and with one PE is instantiated in the 

hardware. 
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Figure 11 Performance comparison of single PE vs. 2-PE 

Figure 12 shows a comparison of the average performance of the GA based 

codeword search algorithm running in software on a single workstation processor 

(upper curve) and the hardware accelerated hybrid  architecture (lower line).  The 

upper curve for the software version was run on one workstation with 1 P4 

processor. The lower curve for the hardware GA was run with a 100MHz FPGA 

clock frequency.  

 

 

 

 

 

Figure 12 Comparison of average performance. 

Compared to the software only implementation, the hardware accelerator running at 

100MHz provides approximately a 1000X speed-up. The speed-up of the hardware 

versions is due to the parallel and pipelined architecture of the hardware. Based on 

previous work [15] we would expect almost linear speed-up (a/0.98) vs. the number 

of fitness calculators, and linear speed-up as the number of distributed GA 

populations p is increased. 
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Figure 13 Comparison of best performance. 

Figure 13 shows a comparison of the best performance to date of the software GA 

and the hardware GA.   In this case, the top red curve for the distributed software 

multi-deme GA was run on a cluster using 10 P4 processors without mating, but 

with migration. The inter-processor communication is implemented using MPI 

(message passing interface). The middle blue curve for the hardware GA was run 

on the Annapolis Wildcard-II in a notebook PC with a 30MHz FPGA clock 

frequency, without mating and migration. The lower magenta curve for the 

hardware GA with exhaustive search was run on a Wildcard board in a P4 

workstation with a 100MHz FPGA clock frequency, also without mating and 

migration (exhaustive search found 8 more words). 

 

 

 

 

 

Figure 14 Size of local optimal DNA codeword libraries built with 300sec. GA 

plus exhaustive search. 

In a final set of experiments, we used the exhaustive search version of the hardware 

accelerator to determine the average size of locally optimum codeword libraries 

that can be built, and the efficacy of the GA for building them.  Figure 14 shows a 

histogram of the sizes of libraries generated by running hardware GA (without 
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mating and migration) for 300 seconds followed by hardware exhaustive search. 

The results show that the size of the local optimal DNA codeword library follows 

approximately a normal distribution with mean of about 122 codewords 

(word/word’ pairs). The experiment consists of 60 tests, which took about 90 hours.  

The equivalent test on a 30 workstation cluster would have taken about 3000 hours 

(4 months). 

Figure 15 shows data from a second experiment involving 32 runs of the same 

hardware GA for 600 sec. followed by exhaustive search. The number of words 

found during the GA phase (red) and the exhaustive search phase (green) is 

highlighted.  
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Figure 15 Sizes of Libraries built with 600 sec. GA followed by exhaustive 

search. 

The GA phase alone finds an average of 120.4 words, and exhaustive search raises 

the number found to vs. 121.7.  So, GA alone found about 98.9% of the words that 

can be found. 

7. Conclusions and Future Work  

In this work, we propose a novel architecture for accelerating a multi-deme parallel 

GA based DNA codeword searching algorithm. Our preliminary research results 

show that, using a new hardware and software hybrid implementation, we can 



speedup the DNA codeword search procedure by more than 1000X.  We have also 

described a hardware exhaustive search extension that can produce known locally 

optimum codes. In the future, we plan to extend the current architecture to 

incorporate thermodynamics based metrics for estimating the binding strength of 

DNA pairs, and a checker for codes word of at least length 32. 
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